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LETTER TO THE EDITOR 

Lattice gas model with competing interactions: hard walls, 
dimerisation and a new melting mechanism 

Pal Ruj in t  and Gennady V UiminS 
t Institute for Theoretical Physics, Eotvos University, H-1088 Btfdapest, Puskin U 5-7, 
Hungary 
$ L D Landau Institute for Theoretical Physics, ul Kosygina 2, Moscow 117940, USSR 

Received 8 November 1983 

Abstract. We study the low temperature phases of the two-dimensional A N N N I  model in 
an external field. A new type of melting mechanism due to hard walls is found and special 
Lifshitz-type multicritical points are predicted. For strong attraction between elementary 
units of different periodicity the dimerisation process leads to a phase diagram typical for  
an X X Z  chain. 

Recently much attention has been paid to the study of lattice gas models with anisotropic 
competing interactions (Kinzel et ai 1982, Selke et ai 1983). In two dimensions this 
interest is motivated by different experimental realisations of such simple models, most 
noticeably H/Pd(100), O/W(110), H/Fe(llO) and O/Pd(llO).  

In this letter we consider the low temperature region of the 2~ axial next-nearest- 
neighbour Ising (ANNNI) model in a field (Rujan et a1 1983). For antiferromagnetic 
competing first and second neighbour interactions in the x direction and ferromagnetic 
interactions in the y direction, this model describes reasonably well the structures 
observed in the system O/Pd(llO) (Rujan et a1 1983). Moreover, we believe that 
our analysis is also valid for the more general problem of commensurate (c)-incom- 
mensurate (IC) phase transitions in two dimensions. In the following we shall pursue 
the line of thought of Villain and Bak (1981) and interested readers are referred to 
their work for technical details. The Hamiltonian under consideration has the form 

where K i = J i / k , T ,  H = p B B / k g T  and sii=*l. 
The T = 0 phase diagram of this model consists of the different layered structures 

shown in figure 1 (Oguchi 1965). The notation (2, i) refers to a periodic structure of 
two columns of up-spins followed by one column of down-spins, etc. The ferromagnetic 
phase (F,) is uniquely fixed by the external field. 

At low temperatures and near the multicritical lines AC, AB and BD (see figure 
1) the dominant low temperature excitations are line defects (walls) and their thermal 
motion represented by short wall excursions (kinks) to the left or to the right. In 
simple cases the problem of thermalised walls can be solved exactly (Villain and Bak 
1981), while the effect of higher excitations, mainly dislocations, is assessed using 
renormalisation group arguments (Coppersmith er ai 1981). 
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Figure 1. Ground state phase diagram of the ANNNI model in a field at T = 0 as a function 
of K = K J K ,  and h = H/lK,l .  

We generalise this approach in two different directions. First, we consider a typical 
situation where one has an additional competition between two different types of walls 
(near point A in figure 1). Our approach is exact in second order in the ‘temperature’ 
variable y = e-2Ko= K,* = -0.5 In tanh KO. 

A quite different situation is encountered near point B in figure 1, where the strong 
attraction between two types of elementary units cannot be neglected even in first 
order in y and leads to a dimerised phase. Some questions related to  our analysis had 
been studied previously in a different context by Howe et a1 (1983) and Kardar and 
Shankar (1983). 

Let us consider first the encircled region near point A (figure 1). All layered ground 
state (GS) structures ( T  = 0) may be formed as an alternating sequence of A-type units 
(++ or +) and B-Jype units (- - and -). At low temperatures and near the multicritical 
lines the A B A B , .  . ground state structure is altered by a few line defects (walls or 
solitons) corresponding to the change of an A(B)-type GS unit into an ‘excited’ unit 
of the same type, a(b).  The a(b) units have different excitation energies and ‘easy’ 
(‘hard’) wall denote a light (heavy) excitation, respectively. Following Villain and Bak 
(1981) the a(b) units are considered as particles and the GS units A and B as holes. 
A fictitious lattice is introduced whose length M equals twice the total number of 
A-type or B-type units. Note that the length of M in original lattice constants depends 
on the present number of particles. 

In the usual approach one uses the transfer matrix formalism to calculate the 
partition function of thermalised walls at fixed M. Then the free energy is obtained 
by minimising with respect to M. 

Writing the row-to-row transfer operator in the fictitious space as 

T = exp( - H )  ( M  fixed) (1) 
we construct H through a low temperature expansion valid in second order in y. The 
cases A = + + ,  a = + ,  B=-- ,  b = -  and A = + ,  a = + + ,  B=- ,  b=--  lead to H 
operators of similar structure. The processes involved in the construction of the 
Hamiltonian are shown in table 1 together with the corresponding sums written in 
terms of the fermion operators {cm}(n,,, = CLC,). The counterterms arise because of 
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Table 1. Typical processes leading to the Hamiltonian (3). For the (2,z) G S  
while for the (1,T) G S  

= -Kl + 2Kz 
= 2K, -4K,. In both cases E ,  = H. 

Process Contribution to H 

Ground state 
1, A = + + , B = - -  
2, A = + ,  B = -  

Straight walls 

ABABaBab 3000.0.. cl  n,,, + ~2 C e’“”’n,,, 

Thermal puctuations of walls 
ABaBA CO.0C 
AbABA COOCC -Y c (CZ,C, , ,+l  +c;,+,c,,,) 

Counterterms 
ABaBA 33.GC 

aBABA .C;OCC 
AbABA 3.00c i Y 2  c (c~,c , , , -z+c~,+zc , , , )  

ABaBA C9.CC 

AbABA S.3CC 

ABaBA 0O.CO 

the exponentiation of the low temperature series. Terms of order y2n,,,nmtl are 
neglected because near the c-IC boundary I? is small. 

After a Fourier transformation one folds the Brillouin zone into the - ~ / 2  S k S 71/2 
interval and one has 

where Uk = C k ,  b k  = C k + , ,  and 

h2 = -H,  h ( * )  = -K,+2K2T2ycos  k+2y2s in2  k, 

for the (2,z) structure, while for the ( 1 , i )  G S  structure (-Kl + 2K2) --* (2K1 -4K2). 
The diagonalisation of (2) is standard and one obtains the c-IC boundaries as 

H 2 =  (-Kl + 2KJ2-4y2 

H 2  = (2K1 -4K2)2 - 4y2 

for (2,2) -IC, 

for (1, i)-Ic. 
(3)  

The incommensurate (floating) phase near the (1, I) boundary is not stable against 
dislocations (Coppersmith et ul 1981, Villain and Bak 1981) and (3)  represents the 
boundary between the (1, i) phase and the ferro-paramagnetic (liquid) phase. This 
transition is of Ising type. The ‘four-leg’ easy wall dislocations, however, are not 
relevant near the (2,z)  boundary. If 

H = 2K1 -4K2+2y2 (4) 
the IC phase melts into the liquid phase through a c-IC type phase transition (a = $  
and the misfit parameter obeys the square root law on the IC side; U = 1 and the specific 
heat is regular on the liquid side). 
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The situation is even more interesting for the (2, f )  G S  structure, A = ++, B = -, 
a = +, b = --. The low temperature processes are illustrated in table 2. Note that the 
dominant term in y order is the creation (absorption) of a pair of easy(hard) walls. 

Table 2. Typical processes leading to the Hamiltonian (61, e l  = H, E~ = f ( 4 K l  - 8 K ,  + H I .  

Process 
~ 

Contribution to H 

Ground state A = ++, B = - EGS = - f (K,  + K ,  + H )  
Straight walls a = +, b = -- 
ABaBabA 0 0 0 0 E~ E n,,, + E ~  C e'"'"n,,, 

Thermal puctuations of walls 

ABabA 00.00 

ABaBA 00.00 
aBABA .000C 

ABABA 00000 

Counterterms 
ABaBA 00.00 

abaBA 0.. 00 f Y 2  c ( c ; ; c c , , , + , + c ~ , + 2 c , , , )  
aBABA .CO00 

ABabA 03..0 

ABabA 03..0 
ABABA 00300 +r2 C n,,,n,,,+ + ( 1 - n,,, )( 1 - n,,,+ 1) 

Neglecting again the y2  nmnm+ terms and after the Fourier transformation the Brillouin 
zone is folded into the O s  k 5 ~ / 2  interval: 

H =  c Hk, 
O s k s v / 2  

Hk=h,(a:Clk +a'ka-k+btbk+b+kb-k)+h2(b:ak  + bfka-k+a:bk+a'kb-k) 

+ h3(aka-k + b-kbk +aTka: + b;b+k) ,  ( 5 )  

where 

hl= H - y2( 1 +cos 2 k ) ,  

The diagonalisation of this Hamiltonian is more involved but is still feasible analytically. 
The lowest two energy levels are, except for identical constants, given by 

h2 = ( H - 8 K 2  + 4K1 - r2)/3, h3 = 2 y sin k. 

( 6 )  2 112 El = -h2, E*= - ( h f  + h 3 )  . 
A careful study of the ground state structure of (5) reveals the following phase diagram. 
A c-IC phase transition takes place at 

H = 2 K 1  - 4 K , + 5 / 2 r 2  (7a) 

on the (1,i) side and at 
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on the (2 , z )  side of the ( 2 , i )  phase. This incommensurate phase melts through a 
second ICC type transition mediated by hard walls (here point defects become relevant) 
at 

H = -KI + 2K2+ 7/4y2 (8a )  

on the ( 1 , i )  side and at 

H =2K1-4K2+5/2y2 

on the (2 , z )  side. There is a direct, Ising type transition from the ( 2 , i )  phase into 
the disordered phase at a special Lifshitz-type multicritical point at the intersection 
of (6b)-(7b) 

y 2 =  8K2-4K1 2 0. (9) 

Since the ‘three-leg’ dislocations of easy walls are not relevant near the (2, i) boundary 
this type of behaviour should be seen around point A ( K 3 4, H small in figure 1). 

The situation near point B ( H  finite, K small) is quite different. The layered 
structures encountered here can be described in terms of only two elementary units, 
A =  +- and B=+. Considering +- as a hole and + as a particle the low temperature 
form of the transfer matrix Hamiltonian ( 1 )  is 

H =constant+C[~n,+wn,nm+l-y~(C+,C,+,+~+,+l~m)I (10) 
m 

where 

& = E a -  E A  + EAB + EBA-2EAA + (1 - !A/ !a)( E A  f &AA) ,  

W = & A A + & B B - E A B - & B A ,  

is the energy of a single particle A(B), while etc are particle-particle 
interaction energies, lA( lB) being the length of unit A(B). A simple calculation yields 
E = -H + 2K1 - 4K2, w = 4K2. Note that the interaction term nmn,+, is now propor- 
tional to K 2  and is not necessarily small. Using the Jordan-Wigner transformation it 
can be shown that (10) corresponds to an XXZ-chain Hamiltonian: 

H X X Z = c o n s t a n t ‘ + ~  [ : (H-Hc)aL +2K2aLaL+, - r ’ ( ~ k u k + ~  +crLaL+,)] (11) 

where ax,y~z are the usual Pauli matrices and H, = 2KI -iK2. As pointed out recently 
(Uimin and Pokrovsky 1983) the ( 2 , i )  phase can be considered as a dimerised phase 
of A = +- and B = + particles. The phase boundary of the (2, i) phase can be calculated 
using the results of Yang and Yang (1966). Along the line H = H, the (2,T) phase 
changes into an IC phase at ( y2), = 2K2 temperature. The c-IC phase boundary has a 
strong cusp-like behaviour around H = H,, y 2  = ( y2),: 

m 

H - H, = $TI[( y2)’ - ( y 2 )  A }  exp( - r2/ 2A ) 

where A’ - 2 y 2 [  y 2  - ( Y ~ ) ~ ] .  
At low temperature the phase diagram has the form 

H - H, = 3 y 2  sinh A[+ - (cosh A ) - ’  + (cosh 2A)-’ T . . .] (13) 

where cosh A = [2K2/ y 2 ( ,  y 2  is small. The first-order result in y2  reproduces the free 
fermion result (Rujhn et a1 1983). 
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In conciusion we have demonstrated that-at least in special regions of the para- 
meter space-the ANNNI model in a field exhibits a new type of hard wall mediated 
melting transition which is not of the Kosterlitz-Thouless type. A special type of 
Lifshitz point emerges as a result of the competition between line and point defects. 
At small K we also find a typical dimerisation process appropriately described by an 
XXZ Hamiltonian. Detailed cakulations will be published elsewhere. 
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